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Abstract. The prominent objective of present study is to propose a novel stochastic model for availability

optimization of the embedded life critical systems. Embedded life critical systems comprise using software and

hardware components and human being works as an operator. In present analysis provision of redundant software

and hardware components is made. The system may suffer due to software, hardware, and operator failures. A

trained repairman always remains available to upgrade software and repair the hardware. The operator undergoes

for treatment upon failure. All time dependent random variables are exponentially distributed. The availability

function is derived using Markov birth-death process and optimized by well-known algorithms Dragon Fly (DA)

and Gray Wolf optimization (GWO) algorithms. It is observed that GWO outperforms the DA algorithm in

terms of elapsed time and convergence rate.
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1 Introduction

Embedded systems extensively used in most of the sectors and are designed using one or more
processors for execution of a specific task. As technology advances, the narrowing of the gap
between embedded systems and other computing devices and systems designed with multiple
features has been visualized, but many systems, such as smartphone processing units, are still
embedded. Some of the major challenges faced by system designers are processor selection,
product enhancements, and rapid product delivery. Embedded systems consist of hardware and
software components. Hardware and software requirements vary from system to system, de-
pending on their applicability and manufacturing goals. Compared to other computer systems,
embedded systems are subject to stricter restrictions. The different applications of embedded
systems and the different requirements of customers present challenges for system designers in
designing generalized models of such systems. This allows system designers to study hardware
and software together when drawing design conclusions. However, this can pose some issues in
terms of size, cost, design space, and complexity. Advances in technology have also established
a new generation of devices that improve performance. However, there can be some challenges.
Therefore, it is important to evaluate the reliability of these systems. Several approached have
been proposed by researchers to increase the availability of the system models. Redundancy is
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one of the key methods of reliability and availability improvement. In many sectors like medi-
cal, transport, communication and industrial redundancy is extensively used. Many researchers
like Wattanapongsakorn and Levitan (2004), Yadavalli et al. (2005), Huang and Chang (2007),
Brooks et al. (2007), El-Said Khaled and El-Sherbeny Mohamed (2010), Meedeniya et al. (2011),
Singh and Gupta (2012), El-Sherbeny (2017), Kumar and Saini (2018), Neggaz et al. (2018),
and Saini and Kumar (2020) proposed several models under various set of assumption for reli-
ability evaluation o the systems. But most of these studies concentrated on the derivation of
the local solution of the problem. In these days, various metaheuristic approaches exist which
provides the global solution of the problem. Jagtap et al. (2021) optimized availability of ther-
mal power plant water circulation system using PSO. Kumar et al. (2022) proposed an efficient
stochastic model for availability optimization of cooling tower using metaheuristic algorithms
GA and PSO. It is identified that PSO provides better results than GA in availability prediction
of cooling towers. Saini et al. (2022) developed a novel stochastic model for availability optimiza-
tion of condenser of power plants using GA and PSO. Recently, many swarm intelligence-based
algorithms has been developed for availability optimization of industrial systems. Mirjalili et al.
(2014) proposed gray wolf optimizer and Mafarja et al. (2020) presented the Dragonfly algorithm
for optimization of reliability measures of industrial systems. Yahia et al. (2020) developed a
hybrid optimization algorithm by combination of ant colony and neighbour joining methods
and provide a solution for traveling salesman problem. Taj and Rizwan (2022) investigated the
reliability of a 3-unit parallel system under single repairman facility. Though these algorithms
rarely used in the performance optimization of embedded systems. As embedded systems ex-
tensively used in medical sector like electronic stethoscopes, MRI, PET scan, CT scan, glucose
monitors, pacemakers, and CPAP machines are few examples of embedded systems. So, assur-
ance of reliability and availability of these systems is necessary without any cost restriction to
save the human life. Hence the present work is motivated by extensive use of embedded systems
in medical sector.

Claims of Study:
Till now very few efforts has been made for availability evaluation of embedded systems under
concept of redundancy and controller failure. Using Markov process state transition model is
developed as shown in fig. 1 for availability evaluation and swarm intelligence-based algorithms
are employed to obtain the optimal availability. Researchers claimed the novelty of the proposed
system based on below mentioned points:

• Design: The concept of cold standby redundancy is utilized in the development of model.
The redundant component is used for software as well as hardware. The idea of failure of
controller is not so far discussed in embedded systems.

• Availability Optimization: In our model availability of the embedded system is pre-
dicted by using Dragonfly and Gray wolf optimization algorithms and it is observed that
Gray Wolf algorithm outperforms the Dragon fly algorithm.

• Elapsed Time: It is observed that Gray Wolf algorithm takes less time in the execution
of the objective function in comparison of Dragon fly algorithm.

2 System description

Embedded life critical systems comprise using software and hardware components and human
being works as an operator. In present analysis provision of redundant software and hardware
components is made. The system may suffer due to software, hardware, and operator failures.
A trained repairman always remains available to upgrade software and repair the hardware.
The operator undergoes for treatment upon failure. All time dependent random variables are
exponentially distributed. The availability function is derived using Markov birth-death process
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and optimized by well-known algorithms Dragon Fly (DA) and Gray Wolf optimization (GWO)
algorithms. In proposed system, software (A), hardware (B) and operator (C) are involved as
well as provision of software and hardware unit is also made. The system model is shown in
Figure 1.

Figure 1: State transition diagram of Embedded life critical system

3 Mathematical modeling of embedded life critical system

Here, using Markov birth death process, mathematical model of the embedded system is devel-
oped based on state transition diagram Figure 1. At any time, t, if embedded system is in state
Sk, then the probability that the system to be in state k is defined as: Probability that system
is in state k at time t and remain there in time interval (t, t+∆t) or if it is at any other state at
time t then it transit to state Sk, in time interval (t, t +∆t) provided transition exist between
the states and ∆t → 0. Using the same concept the differential-difference equation at state S0

is derived as follows:

P0(t+∆t) = (1− λ1∆t− λ2∆t− λ3∆t)P0(t) + µ1P1(t)∆t+ µ2P2(t)∆t+ µ3P4(t)∆t

= P0(t)− (λ1∆t+ λ2∆t+ λ3∆t)P0(t) + µ1P1(t)∆t+ µ2P2(t)∆t+ µ3P4(t)∆t
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lim
∆t→0

P0(t+∆t)− P0(t)

∆t
= −(λ1 + λ2 + λ3)P0(t) + µ1P1(t) + µ2P2(t) + µ3P4(t)

P ′
0(t) = −(λ1 + λ2 + λ3)P0(t) + µ1P1(t) + µ2P2(t) + µ3P4(t) .

Taking limit lim
t→∞

, we get

lim
t→∞

P ′
0(t) = −(λ1 + λ2 + λ3)P0(t) + µ1P1(t) + µ2P2(t) + µ3P4(t)

µ1P1 + µ2P2 + µ3P4 − (λ1 + λ2 + λ3)P0 = 0 (1)

The differential-difference equations of rest of the states are derived below:

P1(t+∆t) = (1− λ1∆t− λ2∆t− λ3∆t− µ1∆t)P1(t) + µ1P5(t)∆t+ µ3P6(t)∆t+ µ2P3(t)∆t

+ λ1P0(t)∆t

P1(t+∆t) = P1(t)− (λ1 + λ2 + λ3 + µ1)P1(t)∆t+ µ1P5(t)∆t+ µ3P6(t)∆t+ µ2P3(t)∆t

+ λ1P0(t)∆t

lim
∆t→0

P1(t+∆t)− P1(t)

∆t
= −(λ1 + λ2 + λ3 + µ1)P1(t) + µ1P5(t) + µ3P6(t) + µ2P3(t) + λ1P0(t)∆t

P ′
1(t) = −(λ1 + λ2 + λ3 + µ1)P1(t) + µ1P5(t) + µ3P6(t) + µ2P3(t) + λ1P0(t)

lim
t→∞

P ′
1(t) = −(λ1 + λ2 + λ3 + µ1)P1(t) + µ1P5(t) + µ3P6(t) + µ2P3(t) + λ1P0(t)

− (λ1 + λ2 + λ3 + µ1)P1 + µ1P5 + µ3P6 + µ2P3 + λ1P0 = 0 (2)

P2(t+∆t) = (1− λ1∆t− λ2∆t− λ3∆t− µ2∆t)P2(t) + µ1P3(t)∆t+ µ3P8(t)∆t+ µ2P7(t)∆t

+ λ2P0(t)∆t

P2(t+∆t) = P2(t)− (λ1 + λ2 + λ3 + µ2)P2(t)∆t+ µ1P3(t)∆t+ µ3P8(t)∆t+ µ2P7(t)∆t

+ λ2P0(t)∆t

lim
∆t→0

P2(t+∆t)− P2(t)

∆t
= −(λ1 + λ2 + λ3 + µ2)P2(t) + µ1P3(t) + µ3P8(t) + µ2P7(t) + λ2P0(t)

P ′
2(t) = −(λ1 + λ2 + λ3 + µ2)P2(t) + µ1P3(t) + µ3P8(t) + µ2P7(t) + λ2P0(t)

lim
t→∞

P ′
2(t) = −(λ1 + λ2 + λ3 + µ2)P2(t) + µ1P3(t) + µ3P8(t) + µ2P7(t) + λ2P0(t)

− (λ1 + λ2 + λ3 + µ2)P2 + µ1P3 + µ3P8 + µ2P7 + λ2P0 = 0 (3)

P3(t+∆t) = (1− λ1∆t− λ2∆t− λ3∆t− µ1∆t− µ2∆t)P3(t) + µ1P11(t)∆t+ µ2P10(t)∆t

+ µ3P9(t)∆t+ λ1P2(t)∆t+ λ2P1(t)∆t

P3(t+∆t) = P3(t)− (λ1 + λ2 + λ3 + µ1 + µ2)P3(t)∆t+ µ1P11(t)∆t+ µ2P10(t)∆t

+ µ3P9(t)∆t+ λ1P2(t)∆t+ λ2P1(t)∆t

lim
∆t→0

P3(t+∆t)− P3(t)

∆t
= −(λ1 + λ2 + λ3 + µ1 + µ2)P3(t) + µ1P11(t) + µ2P10(t)

+ µ3P9(t) + λ1P2(t) + λ2P1(t)

P ′
3(t) = −(λ1 + λ2 + λ3 + µ1 + µ2)P3(t) + µ1P11(t) + µ2P10(t) + µ3P9(t) + λ1P2(t) + λ2P1(t)

lim
t→∞

P ′
3(t) = −(λ1 + λ2 + λ3 + µ1 + µ2)P3(t) + µ1P11(t) + µ2P10(t) + µ3P9(t) + λ1P2(t) + λ2P1(t)

− (λ1 + λ2 + λ3 + µ1 + µ2)P3 + µ1P11 + µ2P10 + µ3P9 + λ1P2 + λ2P1 = 0 (4)

P4(t+∆t) = (1− µ3∆t)P4(t) + λ3P0(t)∆t

P4(t+∆t) = P4(t)− µ3P4(t)∆t+ λ3P0(t)∆t

lim
∆t→0

P4(t+∆t)− P4(t)

∆t
= −µ3P4(t) + λ3P0(t)

P ′
4(t) = −µ3P4(t) + λ3P0(t)

lim
t→∞

P ′
4(t) = −µ3P4(t) + λ3P0(t)
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− µ3P4 + λ3P0 = 0 (5)

− µ1P5 + λ1P1 = 0 (6)

− µ3P6 + λ1P1 = 0 (7)

− µ2P7 + λ2P2 = 0 (8)

− µ3P8 + λ3P2 = 0 (9)

− µ3P9 + λ3P3 = 0 (10)

− µ2P10 + λ2P3 = 0 (11)

− µ1P11 + λ1P3 = 0 (12)

The initial conditions are as follows:

P0(0) = 1

Pi(0) = 0, i = 1 to 11 (13)

From equations (1)-(13), the expression for steady state probabilities is derived as follows:

P0 =
µ1P1 + µ2P2 + µ3P4

λ1 + λ2 + λ3

P1 =
λ1P0 + µ2P3 + µ1P5 + µ3P6

λ1 + λ2 + λ3 + µ1

P2 =
λ2P0 + µ1P3 + µ2P7 + µ3P8

λ1 + λ2 + λ3 + µ2

P3 =
λ1P2 + λ2P1 + µ1P11 + µ2P10 + µ3P9

λ1 + λ2 + λ3 + µ1 + µ2

P4 =
λ3P0

µ3
, P5 =

λ1P1

µ1
, P6 =

λ3P1

µ3
, P7 =

λ2P2

µ2
, P8 =

λ3P2

µ3

P9 =
λ3P3

µ3
, P10 =

λ2P3

µ2
and P11 =

λ1P3

µ1

By probabilistic arguments, it is know that the sum of all transition probabilities are equal to
1, i.e.,

∑11
i=0 Pi = 1. It implies

P0 =

[
1 +

(
1 +

λ1

µ1

)(
λ1

µ1
+

λ2

µ2
+

λ3

µ3
+

λ2

µ2

λ2

µ2
+

λ2

µ2

λ3

µ3

)(
λ1

µ1

λ1

µ1

λ2

µ2

)]−1

(14)

The steady state availability of the system is derived as follows:

A0 = P0 + P1 + P2 + P3 . (15)

The availability function in terms of decision parameters is described below:

A0 =

(
1 +

λ1

µ1
+

λ2

µ2
+

λ1

µ1

λ2

µ2

)[
1 +

(
1 +

λ1

µ1

)(
λ1

µ1
+

λ2

µ2
+

λ3

µ3
+

λ2

µ2

λ2

µ2
+

λ2

µ2

λ3

µ3

)(
λ1

µ1

λ1

µ1

λ2

µ2

)]−1

(16)

4 Numerical results and discussion

Nature-inspired algorithms (NIAs) are extensively utilized to find solutions and optimize per-
formance of complex systems. NIAs are a group of efficient methodologies derived from natural
activities, influenced, and inspired by biological phenomena. NIAs are also utilized to predict
the optimum value of the operational availability of plants/ single unit systems in reliability
engineering. These techniques have some flaws like slow convergence rate and being stuck in
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local optima. For this purpose, in present study, an efficient stochastic model is proposed for
embedded life critical system is proposed. Reliability optimization of the embedded life critical
system is also performed using NIA based algorithms namely Gray Wolf Optimization (GWO)
and Dragon Fly (DA). These techniques are always recommended over traditional and well-
known reliability evaluation techniques like regenerative point technique, cut set method, tie
method and reliability block diagram approach to attain a global solution. The estimation of
failure and repair rates is done. The simulation study is performed using R software on Win-
dows 10 64-bit operating system having 8GB of RAM and Intel Core i5 8th generation CPU.
As the failure and repair rates are the decision variables which influences the availability of the
embedded life critical system. The system has three failure rates (λ1, λ2, λ3) and three repair
rates (µ1, µ2, µ3). The range of these decision variables is provided in Table 1 as follows:

Table 1: Range of the decision variables

Sub-system Range of failure-rate (η) Range of repair-rate (δ)

Hardware λ1 = [0.000003, 0.710] µ1 = [0.000007, 2.20]

Software λ2 = [0.000005, 0.824] µ2 = [0.000008, 2.35]

Controller λ3 = [0.000002, 0.920] µ3 = [0.000009, 2.46]

Table 2: Optimum availability of embedded life critical system with respect to iterations at various
population size = 300 and 500 using GWO and DA

Iteration Population size

300 500

GWO DA GWO DA

40 0.9999992 0.9999992 0.9999992 0.9999992

60 0.9999992 0.9999992 0.9999992 0.9999991

80 0.9999992 0.9999992 0.9999992 0.9999992

100 0.9999992 0.9999992 0.9999992 0.9999981

Table 3: Optimum availability of embedded life critical system with respect to iterations at various
population size = 700 and 900 using GWO and DA

Iteration Population size

700 900

GWO DA GWO DA

40 0.9999992 0.9999992 0.9999992 0.9999992

60 0.9999992 0.9999992 0.9999992 0.9999992

80 0.9999992 0.9999992 0.9999992 0.9999992

100 0.9999992 0.9999967 0.9999992 0.9999992
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Table 4: Elapsed time of the GWO and DA algorithms used in attaining the optimum availability
of embedded life critical system with respect to iterations at various population size = 300 and 500

Iteration Population size

300 500

GWO DA GWO DA

40 2.94 5.92 3 5.98

60 2.86 5.57 2.79 6.17

80 2.72 6.81 2.84 5.69

100 3.28 6.8 2.83 5.77

Table 5: Elapsed time of the GWO and DA algorithms used in attaining the optimum availability
of embedded life critical system with respect to iterations at various population size = 700 and 900

Iteration Population size

700 900

GWO DA GWO DA

40 2.24 5.89 2.91 5.98

60 2.99 6.25 3.17 7.23

80 2.57 5.53 2.83 6.08

100 2.51 7.16 2.81 6.39

Table 6: Parameter estimation of various failure and repair rates after 40 iterations and different
population sizes by using GWO and DA

Iter\NP 300 500 700 900

GWO λ1 0.0000030 0.0000030 0.0000030 0.0000030

λ2 0.0000050 0.0000050 0.0000050 0.0000050

λ3 0.0000020 0.0000020 0.0000020 0.0000020

µ1 2.2 2.2 2.2 2.2

µ2 2.35 2.35 2.35 2.35

µ3 2.46 2.46 2.46 2.46

DA λ1 0.0000030 0.0000030 0.0000030 0.0000030

λ2 0.0000050 0.0000050 0.0000050 0.0000050

λ3 0.0000020 0.0000020 0.0000020 0.0000020

µ1 1.978 2.2 2.2 2.2

µ2 0.889 2.35 2.35 2.35

µ3 2.46 2.46 2.46 2.46
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Table 7: Parameter estimation of various failure and repair rates after 60 iterations and different
population sizes by using GWO and DA

Iter\NP 300 500 700 900

GWO λ1 0.0000030 0.0000030 0.0000030 0.0000030

λ2 0.0000050 0.0000050 0.0000050 0.0000050

λ3 0.0000020 0.0000020 0.0000020 0.0000020

µ1 2.2 2.2 2.2 2.2

µ2 2.35 2.35 2.35 2.35

µ3 2.46 2.46 2.46 2.47

DA λ1 0.0000030 0.0000030 0.0000030 0.0000030

λ2 0.0000050 0.0000050 0.0000050 0.0000050

λ3 0.0000020 0.0000020 0.0000020 0.0000020

µ1 1.883803 2.2 2.2 2.2

µ2 2.35 0.06128191 2.35 2.35

µ3 2.46 2.168636 2.46 2.46

Table 8: Parameter estimation of various failure and repair rates after 80 iterations and different
population sizes by using GWO and DA

Iter\NP 300 500 700 900

GWO λ1 0.0000030 0.0000030 0.0000030 0.0000030

λ2 0.0000050 0.0000050 0.0000050 0.0000050

λ3 0.0000020 0.0000020 0.0000020 0.0000020

µ1 2.2 2.2 2.2 2.2

µ2 2.35 2.35 2.35 2.35

µ3 2.46 2.46 2.46 2.46

DA λ1 0.0000030 0.0000030 0.0000030 0.0000030

λ2 0.0000050 0.0000050 0.0000050 0.0000050

λ3 0.0000020 0.0000020 0.0000020 0.0000020

µ1 2.2 2.2 2.2 2.2

µ2 2.35 2.35 2.35 2.35

µ3 2.46 2.46 2.46 2.46

Table 9: Parameter estimation of various failure and repair rates after 100 iterations and different
population sizes by using GWO and DA

Iter\NP 300 500 700 900

GWO λ1 0.0000030 0.0000030 0.0000030 0.0000030

λ2 0.0000050 0.0000050 0.0000050 0.0000050

λ3 0.0000020 0.0000020 0.0000020 0.0000020

µ1 2.2 2.2 2.2 2.2

µ2 2.35 2.349996 2.35 2.35

µ3 2.46 2.46 2.46 2.46

DA λ1 0.0000030 0.0000030 0.0000030 0.0000030

λ2 0.0000050 0.0000050 0.0000050 0.0000050

λ3 0.0000020 0.0000020 0.0000020 0.0000020

µ1 2.2 2.2 2.2 1.184561

µ2 2.35 2.35 0.1691405 2.35

µ3 2.46 1.040797 0.6154678 2.46
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5 Conclusion

In present study a novel stochastic model is proposed for an embedded life critical system using
the concept of cold standby redundancy for hardware and software components and controller/
operator failure. The global value of the system availability is derived using swarm-intelligence
based algorithms GWO and DA. The availability is derived corresponding to various population
sizes at different number of iterations. It is observed from Tables 2 and 3 that the optimal
value of availability is 0.9999992 at 300, 500, 700, and 900 population sizes and 40 iterations.
Though the elapsed time in execution of the program taken by GWO is very less in comparison
to DA as shown in Tables 4-5. The estimated values of the parameters appended in tables 6-9.
So, it is concluded that the global solution is derived only after 40 iterations at population
size 300 and GWO performs better than the DA. In the literature, embedded critical systems
reliability measures optimization is not such extensively explored. So, this work can be further
extended to other optimization techniques for comparison purpose. Further, GWO and DA can
be utilized to obtain the optimum availability of various process industries i.e., Paper and Pulp,
Shoe Manufacturing, Sugar Industry, Sewage Treatment Plant, etc.
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